

NPS-CS-06-010

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: Missile Defense Agency
 7100 Defense Pentagon
 Washington, D.C. 20301-7100

Design of Preliminary Experiments with the

Sun Java Real-Time System

by

T. S. Cook, D. Drusinsky, J. B. Michael, T.W. Otani, and M. Shing

20 May 2006

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Richard Wells, USN Richard Elster
President Provost

This report was prepared for the Missile Defense Agency and funded by the Missile
Defense Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Thomas Otani
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

________________________ ___________________________
Peter J. Denning, Chairman Leonard A. Ferrari
Department of Computer Science Associate Provost and
 Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 20, 2006

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE: Title (Mix case letters)
Design of Preliminary Experiments with the Sun Java Real-Time System

6. AUTHOR(S)
Thomas S. Cook, Doron Drusinsky, James Bret Michael, Thomas W. Otani, and
Man-Tak Shing

5. FUNDING NUMBERS

MD6080101P1916

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-CS-06-010

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Missile Defense Agency, 7100 Defense Pentagon, Washington, DC 20301-7100

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

There is an increasing interest in recent years to use the JavaTM programming language for implementing real-time
systems. Recent advances in the Real-Time Specification for Java (RTSJ) have resulted in the introduction of new means for
creating predictable real-time environments for Java programs. However, these new features also make the Java semantics
more complex and the run-time behavior of the Java programs more difficult to analyze.

In this technical report, we describe a number of preliminary experiments we performed to study the features of the

Sun Java Real-Time System (RTJ 1.0). We designed these experiments to verify the viability of the Real-Time Java language
for the implementation of the Global Integrated Fire Control System (GIFC)—a component of the C2BMC element of the
Ballistic Missile Defense System (BMDS).

Our preliminary experiment shows that it is preferable to use only the Real-Time Java threads that use the heap

memory and not the no-heap real-time threads for the GIFC software. However, such architecture cannot be implemented by
using RTJ 1.0. Further experiments are needed to determine if the preferred architecture can be implemented with the
upcoming RTJ 2.0, which will give programmers more control over the priority of the garbage collection.

15. NUMBER OF
PAGES

22

14. SUBJECT TERMS

Real-time system, Java programming language, Garbage collection, Ballistic Missile Defense System,
Global Integrated Fire Control, Advanced Battle Manager 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

1

Design of Preliminary
Experiments with Sun
Java Real-Time System

T. S. Cook, D. Drusinsky, J. B. Michael, T. W. Otani, and M. Shing

Abstract

There is an increasing interest in recent years to use the JavaTM program-
ming language for implementing real-time systems. Recent advances in
the Real-Time Specification for Java (RTSJ) have resulted in the intro-
duction of new means for creating predictable real-time environments for
Java programs. However, these new features also make the Java seman-
tics more complex and the run-time behavior of the Java programs more
difficult to analyze.

In this technical report, we describe a number of preliminary experiments
we performed to study the features of the Sun Java Real-Time System
(RTJ 1.0). We designed these experiments to verify the viability of the
Real-Time Java language for the implementation of the Global Integrated
Fire Control System (GIFC)—a component of the C2BMC element of
the Ballistic Missile Defense System (BMDS).

Our preliminary experiment shows that it is preferable to use only the
Real-Time Java threads that use the heap memory and not the no-heap
real-time threads for the GIFC software. However, such architecture can-
not be implemented by using RTJ 1.0. Further experiments are needed to
determine if the preferred architecture can be implemented with the
upcoming RTJ 2.0, which will give programmers more control over the
priority of the garbage collection.

Overview

2

1.0 Overview

The BMDS battle-management (BM) software is a real-time set of sys-
tem functionality that addresses warfighter usage. Key characteristics of
the BM will include the following: (1) a globally-distributed network, (2)
an operational battlespace that includes land, sea, air, and space, (3) capa-
bility to address multiple targets that can threaten a specific theater of
operations or region of the world, (4) management of concurrent bat-
tlespace activities, (5) some level of automated decision making regard-
ing the release or hold of lethal weapons, and (6) stringent requirements
for high levels of trustworthiness of the systems that provide BMD capa-
bilities due to the fact that the threats to be encountered consist of weap-
ons of mass destruction (WMD). Item number six makes unpredictable
system behavior untenable from the public-policy, functional, and safety
perspectives.

This is a progress report on our research to support the Missile Defense
Agency (MDA) in developing and applying advanced technology in sup-
port of developing the Global Integrated Fire Control System (GIFC)—a
component of the C2BMC element of the Ballistic Missile Defense Sys-
tem (BMDS). Our research is driven by the needs of the Missile Defense
Agency to prepare for the delivery of the GIFC to PACOM for use in the
“Terminal Fury” Exercise, which will take place in summer 2007. The
exercise will be used to simulate a large-fight threat space with coordi-
nated attacks by adversaries against the United States, its allies and
friends. The GIFC and the rest of the C2BMC components must be able
to successfully execute the kill chain (i.e., detection through assessment
of kill) for each of the high-priority threat objects (to include cruise mis-
siles, ballistic missiles, and air threats) tracked by the BMDS sensor net-
works.

Here we describe our initial experiments to study the viability of our pre-
liminary software architecture design for the real-time GIFC.

2.0 RTJ v1.0 and v2.0

We began using RTJ 1.0 (Sun reference implementation called Macki-
nac) in our study. The defining feature of RTJ 1.0 that severely affects the
implementation of MDS is the independence of the system’s garbage col-
lector against other real-time threads. With RTJ 1.0, the priority we
assign to a real-time thread does not affect its scheduling relative to the
garbage collector. In other words, even if we assign the highest possible
priority to a real-time thread, it can get interrupted by the garbage collec-

ABM Track Processing

3

tor. We ran an experiment to verify this system behavior (Experiment No.
1). Since the garbage collector cannot be controlled programmatically,
the only recourse we have with RTJ 1.0 is to run the deadline-sensitive
stateless discriminator as a no-heap real-time thread. Because it does not
use any heap memory, it will never be interrupted by the garbage collec-
tor. We describe in the next section the experiment (Experiment No. 2)
that uses no-heap real-time threads.

We visited Sun Microsystems in early March 2006 to consult with the
leaders of the RTJ development team. We learned about the enhancement
to RTJ 2.0 that allows the programmatic control of the garbage collector.
RTJ 2.0 permits programmers to assign the scheduling priority of real-
time threads relative to the priority of the garbage collector. For a time-
critical real-time thread, we can assign the priority higher than the one for
the garbage collector so this real-time thread does not get interrupted by
the garbage collector.

3.0 ABM Track Processing

One of the primary components of the GIFC is the Advanced Battle Man-
ager (ABM). The ABM is a real-time, reactive system. The ABM com-
ponent systems continuously interact with their environment under tight
timing constraints. Both the inputs and outputs of these component sys-
tems must satisfy timing constraints imposed by the BMDS. For the pur-
poses of experimentation, we chose to try out different strategies for
designing real-time functions in RTJ by developing software for the
tracking function of the ABM, as depicted in Figure 1. The primary
functions of the ABM tracker are as follows:

• Interface with ABM and non-organic sensors
• Discriminate own sensor data
• Correlate sensor data
• Generate fused tracks

ABM Track Processing

4

FIGURE 1. Notional model of tracking function of the ABM (from D. S. Caffall, Developing
Dependable Software for a System-Of-Systems, Ph.D. thesis, Naval Postgraduate
School, Monterey, Calif., Mar. 2005)

Experiments

5

4.0 Experiments

One of the challenges we face our study is the scarcity of available refer-
ences. Our main sources of information about RTJ are Bollela [BOLL],
Dibble [DIBB], and Wellings [WELL]. Because of the limited references
to cross-check our findings, we decided to verify every key piece of
information given in said references.

In this section, we present the main experiments we performed. With
these experiments, we tested the architecture of our basic design ideas for
the real-time GIFC. We have executed numerous other test programs, but
they are mainly for the purpose of understanding the RTJ system and will
not be included in the discussion here. Also, we will not discuss the
minor tests and different variations of the three experiments presented
here.

All of the experiments described in this report were run under RTJ 1.0.
We will rerun tehse and additional experiments under the alpha release of
RTJ 2.0 and report the results in a followup technical report.

4.1 Experiment No. 1: Testing the Effect of Garbage Collection

We ran a small test program to verify that the garbage collector will inter-
rupt even the highest priority real-time thread. The main class
RTComputation_LinkedListAllocation, a grandchild of javax.realtime.Realtime-
Thread, creates 20 instances of itself. Each instance will allocate an array
of BigInteger objects and add this array to a linked list. The run method of
this thread repeats this process for N (= 20 for the sample execution)
times. This simulates the thread doing some work.

We run the program with the option -verbose:gc so we can see the garbage
collection activity. The following is a sample output from the program:

Free Memory: 3491152
Elapsed: (6 ms, 960583 ns)

Free Memory: 3069320
Elapsed: (2 ms, 120833 ns)

Free Memory: 2654576
Elapsed: (2 ms, 320250 ns)

Free Memory: 2239832

Experiments

6

Elapsed: (2 ms, 75667 ns)

Free Memory: 1825344
[GC 2046K->349K(3520K), 0.0112029 secs]
Elapsed: (18 ms, 478249 ns)

Free Memory: 3147856
Elapsed: (4 ms, 671666 ns)

Free Memory: 2733112
Elapsed: (1 ms, 283833 ns)

Free Memory: 2318368
Elapsed: (1 ms, 257166 ns)

Free Memory: 1903624
Elapsed: (1 ms, 339583 ns)

Free Memory: 1488880
[GC 2396K->775K(3520K), 0.0049108 secs]
Elapsed: (8 ms, 136417 ns)

Free Memory: 2734680
Elapsed: (0 ms, 846333 ns)

Free Memory: 2319936
Elapsed: (1 ms, 329666 ns)

Free Memory: 1905192
Elapsed: (0 ms, 968584 ns)

Free Memory: 1490448
Elapsed: (0 ms, 978333 ns)

Free Memory: 1075704
[GC 2822K->1201K(3520K), 0.0048332 secs]
Elapsed: (6 ms, 423333 ns)

Free Memory: 2321384
Elapsed: (0 ms, 912250 ns)

Experiments

7

Free Memory: 1906640
Elapsed: (0 ms, 916750 ns)

Free Memory: 1491896
Elapsed: (0 ms, 954083 ns)

Free Memory: 1077152
Elapsed: (0 ms, 968167 ns)

Free Memory: 662408
[GC 3248K->1626K(3776K), 0.0054497 secs]
[Full GC 1626K->424K(3776K), 0.0077447 secs]
Elapsed: (15 ms, 164833 ns)

The output lines
Free Memory: 3491152

Elapsed: (6 ms, 960583 ns)

indicate the amount of free memory in bytes and the elapsed time of run-
ning one thread to completion. In this sample program, we create 20 such
threads. The output lines

[GC 3248K->1626K(3776K), 0.0054497 secs]

[Full GC 1626K->424K(3776K), 0.0077447 secs]

indicate the garbage collection activity. The label GC indicates normal
garbage collection and Full GC indicates a more complete garbage collec-
tion. The legend for the output line is as follows:

[GC xK -> yK (zK), t secs]

xK - size of live objects before GC

yK - size of live objects after GC

zK - total space available

t - time taken to complete the GC

This experiment confirms that we do not have programmatic control of
the garbage collector. The system will run it “whenever” it deems neces-
sary regardless of the priority of the running real-time thread. As shown
in the sample output, there is a huge disparity in the elapsed time, ranging
from the minimum of (0 ms, 846333 ns) to (18 ms, 478249 ns). We con-
clude from this result that we have no option but to run the deadline-sen-
sitive task as a no-heap real-time thread.

Experiments

8

4.2 Experiment No. 2 : Running No-Heap Real-time Thread (NHRTT)

Since the regular Real-time Thread (RTT) gets interrupted by the garbage
collector, with RTJ 1.0, we must run any deadline-sensitive thread as a
no-heap real-time thread (NHRTT). In this experiment, we verify the cor-
rect procedure for creating NHRTTs and that NHRTT does not get inter-
rupted by garbage collection. Creating no-heap real-time threads
correctly is one of the critical aspect when dealing with NHRTTs. It is not
just a matter of calling the new operation for NHRTT.

The standard technique for creating a NHRTT is to let an object (thread)
that creates the NHRTT enter the ImmortalMemory area. In this experi-
ment, we define a Runnable object named NhCreator. The sole purpose
of this object is to create a NHRTT and run it. A NhCreator itself is cre-
ated in a heap, but we make it “enter” into an ImmortalMemory:

ImmortalMemory.instance().enter(new NhCreator())

Once it enters an ImmortalMemory, any object (thread) it creates will be
allocated in the immortal memory (or the scoped memory, which can be
specified at the time a NHRTT is created).

4.3 Experiment No 3: Testing Our Heap/No-Heap Combo Design

In this experiment, we explore the viability of one of the two main design
options we consider for the MDS. To avoid the untimely interruption by
the garbage collector, we propose to execute the track discriminator as a
NHRTT. The data store for the tracks and the object (RTT) that manages
this data store are in the heap memory. The track discriminators are
NHRTTs, and they reside in an ImmortalMemory. The tricky aspect of
this Heap/No-heap architecture is the communication link setup between
the two types of objects (those in Heap and those in ImmortalMemory).
The track objects are in heap, but we must pass this object to the no-heap
track discriminators in the ImmortalMemory. No-heap threads, of course,
cannot access any object in heap (if such thing is allowed, no-heap
threads would be impacted by the garbage collector). Thus, we must set
up the communication link between the two by using WaitFreeRead-
Queue and WaitFreeWriteQueue. We wrote a program to test the archi-
tecture shown in Figure 2:

4.3.1 ProcessorNH
ProcessorNH does not have to wait to get (read) data from the WaitFre-
eReadQueue and does not have to wait to put (write) data to the Wait-
FreeWriteQueue. For each Track clone that comes out of the wait-free
read queue, ProcessorNH creates a Discriminator to discriminate the

Experiments

9

track. The Discriminator will return the Track clone with its discrimina-
tion to the wait-free write queue.

4.3.2 DSController

DSController manages the Track data store. Since no-heap RTT cannot
directly access objects in the heap memory, DSController creates and
passes a clone of the Track object to ProcessorNH. The actual communi-
cation is handled by the Writer. When a Track clone comes back from the
ProcessorNH, via the Reader, DSController updates the corresponding
Track object in the data store.

4.3.3 Reader and Writer
Writer receives a Track clone from DSController and passes it to the
wait-free read queue. Writer can be blocked and wait until it can write the
Track clone to the queue. The term “wait-free” is relative to the read of
this queue, that the reader of this queue does not wait. Reader continually
monitors the wait-free write queue for any result. Reader will also fetch

Data
Store

:DSController

:Writer

:Reader

:ProcessorNH

:WaitFreeReadQueue

:WaitFreeWriteQueue

HEAP NO HEAP

Track

Track
Clone

Track
Clone

Track
Clone

Track
Clone

FIGURE 2. This diagram illustrates the use of the WaitFreeReadQueue and WaitFreeWriteQueue
classes

Experiments

10

the next available Track clone from the queue and pass the result back to
the DSController so it can update the data store.

4.4 Experiment No. 4: Testing Our All-Heap Design

Working with NHRTT is not easy. There are many pitfalls and hurdles
software engineers and programmers must jump. With the upcoming RTJ
2.0, we should be able to run all objects (threads) in a heap because pro-
grammers will have a control over the garbage collection. In this All-
Heap Design, instead of running the Discriminator as NHRTT, we will
run it as a regular RTT, but assign a scheduling priority higher than the
one assigned to the garbage collector. The key innovation of this design
is the use of nominal result. The proposed architecture is in Figure 3 and
the sequence diagram in Figure 4:

:Discriminator
Deadline
Handler

:Discriminator
Deadline
Handler

:Discriminator
Deadline
Handler

:Discriminator
Stateless:Discriminator

Stateless:Discriminator
Stateless

:Discriminator
Nominal:Discriminator

Nominal:Discriminator
Nominal

Data
Store

:DSController

:Discriminator

:Discriminator

:Discriminator

ALL HEAP

Nominal

Stateless

Deadline
Handler

Multiple instances of Discriminator-
Nominal, DiscriminatorStateless,
and DiscriminatorDeadlineHandler
are created.

Priority Above GC

Priority Below GC

FIGURE 3. This class relationship diagram shows the relative priority of the four key classes in the
proposed all-heap design. DiscriminatorNominal and DiscriminatorDeadlineHandler
objects have a priority higher than and DSController and DiscriminatorStateless objects
a priority lower than the priority of the garbage collector.

Experiments

11

DSController Discrimnator
Nominal [i]

Discrimnator
Stateless [i]

Discrimnator
Deadline
Handler [i]

Track[i]

create(i)

create(this, track)

start

startAsynchronous call

loop

create(this)

create(this, track,
 release,
 scheduling)

start

processData loop

showFullResult
handleAsyncEvent
[miss deadline]

showNominalResult

handleAsyncEvent
[miss deadline]

Deadline
Miss Handler

setResult

workDone

setResult

workDone

FIGURE 4. This is the sequence diagram of the classes in the All-Heap design.

Multiprocessor Implementation of RTJ 2.0

12

4.4.1 DSController
The main controller of the program. It creates N tracks, and for each track
created, an instance of DiscriminatorNominal is assigned to it for dis-
crimination.

4.4.2 DiscriminatorNominal
A DiscriminatorNominal object performs the discrimination operation on
the given track. The actual work of discrimination is done by Discrimina-
torStateless. The deadline is set and DiscriminatorDeadlineHandler is
designated as its deadline miss handler.

4.4.3 DiscriminatorStateless
An instance of this class does the actual work of discrimination. When
the full discrimination is completed, it calls its controlling Discriminator-
Nominal to report the result.

4.4.4 DiscriminatorDeadlineHandler
When the set deadline is missed by the DiscriminatorStateless, it calls its
controlling DiscriminatorNominal to report that the nominal result must
be used.

4.4.5 Thread Priorities
DiscriminatorNominal’s priority is set to P, which is higher than the pri-
ority of GC. DiscriminatorStateless’s priority is set to Q, which is lower
than the priority of GC. Priority of deadline miss handler Discrimina-
torDeadlineHandler is set to P+c, where c >=1. A DiscriminatorDead-
lineHandler object must have a priority higher than the one assigned to
the thread it is interrupting.

NOTE: We do not have RTJ 2.0 yet. We only tested this architecture as
much as possible under RTJ 1.0. We will develop further and perform
detailed testing with RTJ 2.0 when we acquire it.

5.0 Multiprocessor Implementation of RTJ 2.0

During our meeting with SUN’s RTJ project members, we raised the
question on the clock precision of the RTJ 1.0. They informed us that,
although the Solaris 9 Operating System is non-real-time, RTJ 1.0 system
bypasses the soft clock of the Solaris 9 Operating System and access the
hardware clock directly. In doing so, the RTJ 1.0 real-time thread is able
to operate accurately in the micro-second range.

Virtual Machine Internal Error

13

In order to test the scalability of the proposed All-Heap Design, as out-
lined in Section 3.4, we will need a good estimate on the average execu-
tion time of the stateless algorithms that will be used by the MDS.

For example, assume that the track processing module control loop runs
in a 2-second cycle and the stateless algorithm has an average execution
time of 100 ms per track. A RTJ system running on a single processor can
process at most 2000/100 = 20 tracks per cycle. On the other hand, if we
have a more efficient stateless algorithm with an average execution time
of, say, 10 ms per track, a RTJ system running on a single processor may
be able to process up to 2000/10 = 200 tracks per cycle.

Since we expect that the track processing module has to process far more
than 200 tracks per 2-second cycle, it is likely that the multi-processor
implementation of RTJ 2.0 is required for the MDS. We will study this
issue further.

6.0 Virtual Machine Internal Error

Throughout our experiments, we have encountered occasional virtual
machine internal errors (Hotspot Virtual Machine Error) that complain
about problematic threads. At this point, we do not know the source of
the problem. It is possible that some coding error on our part is causing
this erratic behavior. However, we believe they are truly the internal
errors that should not occur because they occur sporadically and intermit-
tently in different programs. We will monitor this internal error closely
when we start using RTJ 2.0.

7.0 References

[BOLL] Bollella, Greg., et. al., The Real-Time Specification for Java,
Addison-Wesley, 2000.

[DIBB] Dibble, Peter C., The Real-Time Java Platform Programming,
Prentice-Hall, 2002.

[WELL] Wells, Andy, Concurrent and Real-Time Programming in
Java, John Wiley & Sons, 2004.

References

14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

 INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52

Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09

Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Butch Caffall

Missile Defense Agency
Washington, DC

5. LTC Jason Stine
Missile Defense Agency
Washington, DC

6. LTC Thomas Cook

Naval Postgraduate School
Monterey, CA

7. Dr. Doron Drusinsky
Naval Postgraduate School
Monterey, CA

8. Dr. Bret Michael
Naval Postgraduate School
Monterey, CA

9. Dr. Thomas Otani

Naval Postgraduate School
Monterey, CA

10. Dr. Man-Tak Shing

Naval Postgraduate School
Monterey, CA

 16

11. Mr. Scott Pringle
Missile Defense National Team
Crystal City, VA

12. Mr. Erik Stein

Missile Defense National Team
Crystal City, VA

13. Mr. Tim Trapp
Missile Defense National Team
Crystal City, VA

14. Ms. Deborah Stiltner
Missile Defense National Team
Crystal City, VA

15. Mr. Dion Hinchcliffe
Missile Defense National Team
Crystal City, VA

